Sebenarnya saat membahas membuat robot kontrol baik berbasis wireless UHF ataupun infra merah, kita telah mempelajari komunikasi serial antara dua buah sistem mikrokontroler. Dalam pembahasan ini, kita akan membahas pembuatan kontrol gerak robot menggunakan keyboard komputer yang merupakan komunikasi serial antara PC/Laptop dengan mikrokontroler.
Gambar 1. Ilustrasi kontrol robot menggunakan PC/ Laptop
Dalam hal ini PC bertugas sebagai transmitter pemberi perintah, sedangkan robot sebagai receiver penerima perintah.
SIMULASI PROTEUS ROBOT KONTROL PC
Gambar 2. Simulasi proteus robot kontrol PC
Untuk membuat sebuah robot yang dapat dikendalikan computer, maka perlu dibuat komunikasi serial antara robot (mikrokontroler) dengan sistem computer melalui IC MAX 232 dan PORT DB9. Dalam simulasi proteus, PORT DB9 dibuat virtualnya dengan nama COMPIM, sedangkan untuk menampilkan monitor computer digunakan VTERM.
Program CV
AVR Robot dengan Kendali Keyboard Laptop/PC
/*****************************************************
This program was produced by the
CodeWizardAVR V2.05.0 Professional
Automatic Program Generator
© Copyright 1998-2010 Pavel Haiduc, HP InfoTech s.r.l.
http://www.hpinfotech.com
Project : Robot dengan Kontrol PC
Version : I
Date : 11/12/2012
Author : Mada Sanjaya
WS, Ph.D
Company : Bolabot Techno Robotic School
Comments: "SEMANGAT!!!!"
Chip type
: ATmega16
Program type
: Application
AVR Core Clock frequency: 8.000000 MHz
Memory model
: Small
External RAM size
: 0
Data Stack size
: 256
*****************************************************/
#include <mega16.h>
#include <delay.h>
#ifndef RXB8
#define RXB8 1
#endif
#ifndef TXB8
#define TXB8 0
#endif
#ifndef UPE
#define UPE 2
#endif
#ifndef DOR
#define DOR 3
#endif
#ifndef FE
#define FE 4
#endif
#ifndef UDRE
#define UDRE 5
#endif
#ifndef RXC
#define RXC 7
#endif
#define FRAMING_ERROR (1<<FE)
#define PARITY_ERROR (1<<UPE)
#define DATA_OVERRUN (1<<DOR)
#define DATA_REGISTER_EMPTY (1<<UDRE)
#define RX_COMPLETE (1<<RXC)
// USART Receiver buffer
#define RX_BUFFER_SIZE 8
char rx_buffer[RX_BUFFER_SIZE];
#if RX_BUFFER_SIZE <= 256
unsigned char rx_wr_index,rx_rd_index,rx_counter;
#else
unsigned int rx_wr_index,rx_rd_index,rx_counter;
#endif
// This flag is set on USART Receiver buffer overflow
bit rx_buffer_overflow;
// USART Receiver interrupt service routine
interrupt [USART_RXC] void usart_rx_isr(void)
{
char status,data;
status=UCSRA;
data=UDR;
if ((status & (FRAMING_ERROR | PARITY_ERROR |
DATA_OVERRUN))==0)
{
rx_buffer[rx_wr_index++]=data;
#if RX_BUFFER_SIZE == 256
// special case for
receiver buffer size=256
if (++rx_counter ==
0)
{
#else
if (rx_wr_index ==
RX_BUFFER_SIZE) rx_wr_index=0;
if (++rx_counter ==
RX_BUFFER_SIZE)
{
rx_counter=0;
#endif
rx_buffer_overflow=1;
}
}
}
#ifndef _DEBUG_TERMINAL_IO_
// Get a character from the USART Receiver buffer
#define _ALTERNATE_GETCHAR_
#pragma used+
char getchar(void)
{
char data;
while (rx_counter==0);
data=rx_buffer[rx_rd_index++];
#if RX_BUFFER_SIZE != 256
if (rx_rd_index == RX_BUFFER_SIZE) rx_rd_index=0;
#endif
#asm("cli")
--rx_counter;
#asm("sei")
return data;
}
#pragma used-
#endif
// USART Transmitter buffer
#define TX_BUFFER_SIZE 8
char tx_buffer[TX_BUFFER_SIZE];
#if TX_BUFFER_SIZE <= 256
unsigned char tx_wr_index,tx_rd_index,tx_counter;
#else
unsigned int tx_wr_index,tx_rd_index,tx_counter;
#endif
// USART Transmitter interrupt service routine
interrupt [USART_TXC] void usart_tx_isr(void)
{
if (tx_counter)
{
--tx_counter;
UDR=tx_buffer[tx_rd_index++];
#if TX_BUFFER_SIZE != 256
if (tx_rd_index ==
TX_BUFFER_SIZE) tx_rd_index=0;
#endif
}
}
#ifndef _DEBUG_TERMINAL_IO_
// Write a character to the USART Transmitter buffer
#define _ALTERNATE_PUTCHAR_
#pragma used+
void putchar(char c)
{
while (tx_counter == TX_BUFFER_SIZE);
#asm("cli")
if (tx_counter || ((UCSRA & DATA_REGISTER_EMPTY)==0))
{
tx_buffer[tx_wr_index++]=c;
#if TX_BUFFER_SIZE != 256
if (tx_wr_index ==
TX_BUFFER_SIZE) tx_wr_index=0;
#endif
++tx_counter;
}
else
UDR=c;
#asm("sei")
}
#pragma used-
#endif
// Standard Input/Output functions
#include <stdio.h>
// Declare your global variables here
void main(void)
{
// Declare your local variables here
// Input/Output Ports initialization
// Port A initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In
Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T
State1=T State0=T
PORTA=0x00;
DDRA=0x00;
// Port B initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In
Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T
State1=T State0=T
PORTB=0x00;
DDRB=0x00;
// Port C initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In
Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T
State1=T State0=T
PORTC=0x00;
DDRC=0x00;
// Port D initialization
// Func7=In Func6=In Func5=Out Func4=Out Func3=In Func2=In
Func1=In Func0=In
// State7=T State6=T State5=0 State4=0 State3=T State2=T
State1=T State0=T
PORTD=0x00;
DDRD=0x30;
// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=0xFF
// OC0 output: Disconnected
TCCR0=0x00;
TCNT0=0x00;
OCR0=0x00;
// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: 7.813 kHz
// Mode: Fast PWM top=0x00FF
// OC1A output: Non-Inv.
// OC1B output: Non-Inv.
// Noise Canceler: Off
// Input Capture on Falling Edge
// Timer1 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: Off
// Compare B Match Interrupt: Off
TCCR1A=0xA1;
TCCR1B=0x0D;
TCNT1H=0x00;
TCNT1L=0x00;
ICR1H=0x00;
ICR1L=0x00;
OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;
// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer2 Stopped
// Mode: Normal top=0xFF
// OC2 output: Disconnected
ASSR=0x00;
TCCR2=0x00;
TCNT2=0x00;
OCR2=0x00;
// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
// INT2: Off
MCUCR=0x00;
MCUCSR=0x00;
// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=0x00;
// USART initialization
// Communication Parameters: 8 Data, 1 Stop, No Parity
// USART Receiver: On
// USART Transmitter: On
// USART Mode: Asynchronous
// USART Baud Rate: 9600
UCSRA=0x00;
UCSRB=0xD8;
UCSRC=0x86;
UBRRH=0x00;
UBRRL=0x33;
// Analog Comparator initialization
// Analog Comparator: Off
// Analog Comparator Input Capture by Timer/Counter 1: Off
ACSR=0x80;
SFIOR=0x00;
// ADC initialization
// ADC disabled
ADCSRA=0x00;
// SPI initialization
// SPI disabled
SPCR=0x00;
// TWI initialization
// TWI disabled
TWCR=0x00;
// Global enable interrupts
printf("WELCOME TO BOLABOT");//menampilkan karakter
di PC
//definisikan output untuk motor dc
//motor kiri
DDRD.2=1;
DDRD.3=1;
//motor kanan
DDRD.6=1;
DDRD.7=1;
//kondisi awal
PORTD.2=0;
PORTD.3=0;
PORTD.6=0;
PORTD.7=0;
//PWM motor dc
OCR1A=200;
OCR1B=200;
while (1)
{
if (getchar()=='A')
//belok kanan
{
PORTD.2=0;
PORTD.3=1;
PORTD.6=0;
PORTD.7=0;
printf("\n ROBOT BELOK KANAN");
}
else if (getchar()=='Z')
//belok kiri
{
PORTD.2=0;
PORTD.3=0;
PORTD.6=0;
PORTD.7=1;
printf("\n ROBOT BELOK KIRI");
}
else if (getchar()=='M')
//mundur
{
PORTD.2=1;
PORTD.3=0;
PORTD.6=1;
PORTD.7=0;
printf("\n ROBOT BERGERAK MUNDUR");
}
else if (getchar()=='K')
//maju
{
PORTD.2=0;
PORTD.3=1;
PORTD.6=0;
PORTD.7=1;
printf("\n ROBOT BERGERAK MAJU");
}
{
PORTD.2=0;
PORTD.3=0;
PORTD.6=0;
PORTD.7=0;
printf("\n ROBOT DIAM");
}
}
}
Uji Coba Simulasi Proteus
Uji coba simulasi robot kontrol PC menggunakan Proteus, Gambar (a) sebelum keyboard di tekan. Gambar (b) dengan menekan A (shift A), robot bergerak ke kanan, Z(shift Z), bergerak ke kiri, M(shift M), bergerak mundur, dan K(shift K), bergerak maju
Berikut realisasi hardware robot kontrol digital menggunakan keyboard Laptop/PC
Copyright 2013@ Profesor Bolabot